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11.1 INTRODUCTION

This section gives the formulation for calculating precision values of the
one-way light time ρ1, the round-trip light time ρ, and the quasar delay τ. There
are two versions of the precision one-way light time. One is used to calculate
computed values of one-way doppler (F1) observables and one-way wideband
(IWS) and narrowband (INS) spacecraft interferometry observables. The other
precision one-way light time is used to calculate computed values of GPS/TOPEX
pseudo-range and carrier-phase observables. The round-trip light time ρ is two-
way if the transmitter (a tracking station on Earth or an Earth satellite) is also the
receiver. If the receiver is not the transmitter, the round-trip light time is three-
way. The precision light times ρ1, ρ, and τ are used in the formulation of Section
13 to calculate computed values of the observables.

Prior to discussing the calculation of the precision light times, a model
which has been ignored so far in the formulation must be introduced. This is the
model for the down-leg delay τD at the receiving station on Earth and the up-leg
delay τU at the transmitting station on Earth. This model is necessary to process
tracking data obtained at the new 34-m beam wave guide (BWG) antennas at the
Goldstone complex. For these tracking stations, the transmitting and receiving
electronics are located at a central site which is tens of kilometers away from the
individual antennas. The model for representing τD and τU is given in Section
11.2.

The formulation for calculating the precision round-trip light time ρ is
given in Section 11.3. The definition of ρ is given in Section 11.3.1. The
formulation for computing ρ is given in Section 11.3.2.

Section 11.4 gives the formulation for calculating the precision one-way
light time ρ1 used to calculate the computed values of one-way doppler (F1)
observables and one-way wideband (IWS) and narrowband (INS) spacecraft
interferometry observables. The computed values of each of these observables
(each of the two computed F1 observables which are differenced to obtain the
computed INS observable) should be calculated from the differenced one-way
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light time   �ρ1 defined to be the reception time t3(ST) in station time ST at the
receiver (a tracking station on Earth or an Earth satellite) minus the transmission
time t2(TAI) in atomic time TAI at the spacecraft. However, in order to calculate

  �ρ1, an expression for calculating ET − TAI at the spacecraft is required. Since such
a general expression is not available, we calculate the precision one-way light
time ρ1, which is defined to be t3(ST) minus t2(ET) instead of   �ρ1. Then, the
differenced one-way light time   �ρ1 is calculated as the differenced one-way light
time ρ1 plus the correction term ∆. The term ∆ is defined to be the change in
ET − TAI which occurs during the spacecraft transmission interval. The preceding
discussion for calculating the differenced one-way light time is given in detail in
Section 11.4.1. The tedious formulation for calculating ∆ is given in Sections 11.4.2
and 11.4.3. The formulation for calculating the precision one-way light time ρ1 is
given in Section 11.4.4.

The formulation for calculating the precision one-way light time ρ1 used
to calculate the computed values of GPS/TOPEX pseudo-range and carrier-phase
observables is given in Section 11.5. This version of ρ1 is defined in Section 11.5.1.
The formulation for computing ρ1 is given in Section 11.5.2. The expression for
ρ1 includes the geometrical phase correction ∆Φ, which is the lag in the measured
phase at the receiver due to the rotation of the receiver relative to the
transmitter. The formulation for calculating ∆Φ is given in Section 11.5.3. The
formulation for calculating the variable part of the phase-center offset at the
transmitting GPS satellite, the receiving TOPEX satellite, and the GPS receiving
station on Earth is given in Section 11.5.4.

The formulation for calculating the precision quasar delay τ is given in
Section 11.6. The definition of τ is given in Section 11.6.1. The formulation for
computing τ is given in Section 11.6.2.

11.2 DELAYS

For round-trip spacecraft data types, the downlink delay τD at the
receiving station on Earth and the uplink delay τU at the transmitting station on
Earth are placed on the record of the OD file for the data point. For one-way
spacecraft data types, only τD is given. For narrowband and wideband spacecraft



SECTION  11

11�6

and quasar interferometry data types, τD is given for each of the two receiving
stations on Earth. For quasar interferometry data types, there is no τU. For
round-trip spacecraft interferometry data types, the effect of τU at the
transmitting station on Earth cancels to sufficient accuracy in calculating these
differenced data types. Hence, for this case, τU is set to zero.

If the received signal at a tracking station on Earth is a carrier-arrayed
signal obtained by combining signals from several antennas, it will contain a
fixed delay on the order of 1 ms. This delay will be added to the down-leg station
delay τD.

If a tracking station on Earth has its own transmitting and receiving
electronics located close to the antenna, the values of τD and τU for that tracking
station are very small. Small values of τD and τU are subtracted from the
observed values of range observables and the values placed on each record of
the OD file for that tracking station are set to zero.

If a transmitting station or a receiving station is an Earth satellite, the
values of τD and τU for that station are currently set to zero.

In the following, a receiver or a transmitter can be a tracking station on
Earth or an Earth satellite. Reference will be made to the reception time or the
transmission time at the tracking point of the antenna at the receiver or the
transmitter. At a DSN tracking station on Earth, the tracking point is the
secondary axis of the antenna (see Section 10.5.1). If the receiver or the
transmitter is an Earth satellite, the tracking point is the center of mass of the
satellite or the nominal phase center of the receiving or transmitting antenna of
the satellite. When the satellite ephemeris is interpolated for the position vector
of the satellite, the position vector obtained can refer to either of these points
(See Section 7.3.3, Step 3 and Section 8.3.6, Steps 2, 9, and 22). If a receiving
station on Earth is a GPS receiving station, the tracking point of the antenna is
the nominal phase center of the receiving antenna. The position vector of the
nominal phase center is calculated as described in Section 7.3.1, Step 3a.
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Section 11.2.1 gives the equations for calculating the reception time t3(ST)R

at the receiving electronics (subscript R) at the receiver for each light-time
solution for each spacecraft data type. It also gives the equations for calculating
the reception time t1(ST)R at the receiving electronics at receiver 1 for each light-
time solution for quasar interferometry data types. These are the equations of
Section 10.2.3.3.1 with a subscript R added to the reception times. These
equations are functions of the data time tag (TT) and the count time (if any) for
the data point.

Section 11.2.2 gives the equations for transforming reception times at the
receiving electronics (subscript R) to reception times (τD seconds earlier) at the
tracking point of the receiver. These equations apply at the reception time t3 for
spacecraft light-time solutions and at the reception time t1 at receiver 1 for
quasar light-time solutions.

Section 11.2.3 gives the equation for transforming the transmission time at
the tracking point of the transmitter for a spacecraft light-time solution to the
transmission time at the transmitting electronics (subscript T) (τU seconds
earlier). It also gives the equation for transforming the reception time at the
tracking point at receiver 2 for a quasar light-time solution to the reception time
at the receiving electronics (subscript R) (τD seconds later).

The equations in Sections 11.2.1 and 11.2.2 are used to calculate the
reception time t3(ST) at the tracking point of the receiver for each spacecraft
light-time solution. This epoch is used in Section 8.3.6, Step 1, to start each
spacecraft light solution. The equations in Sections 11.2.1 and 11.2.2 are also used
to calculate the reception time t1(ST) at the tracking point of receiver 1 for each
quasar light-time solution. This epoch is used in Section 8.4.3, Step 1, to start each
quasar light solution.

From the preceding paragraphs, it is seen that the down-leg delay τD at
each receiver for spacecraft data types and the down-leg delay τD at receiver 1
for quasar data types affect the spacecraft and quasar light-time solutions. It will
be seen in Sections 11.3 to 11.6 that the down-leg delay τD at each receiver and
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the up-leg delay τU at each transmitter affect the calculated precision values of
the one-way light time ρ1, the round-trip light time ρ, and the quasar delay τ.

It will be seen in Section 13 that computed values of many of the data
types are explicit functions of reception times at the receiver and transmission
times at the transmitter. In each case, the reception times are at the receiving
electronics (subscript R), and the transmission times are at the transmitting
electronics (subscript T).

The spacecraft transponder delay is normally subtracted from range
observables in the ODE. It is not modelled in program Regres. Sometimes, it is
not subtracted in the ODE and is added to the computed values of range
observables using CSP commands in the Regres editor (see Section 10.2). If a
spacecraft has multiple transponders, each transponder will, in general, have a
different delay.

11.2.1 TRANSFORMING DATA TIME TAG TO RECEPTION TIME(S) AT

RECEIVING ELECTRONICS

Equations (10�33) to (10�35) of Section 10.2.3.3.1 give the reception time
t3(ST) of the spacecraft signal at the receiver for each calculated light-time
solution for each spacecraft data type. Equations (10�36) and (10�37) give the
reception time t1(ST) of the quasar wavefront at receiver 1 for the quasar light-
time solution for an IWQ observable and for each of the two light-time solutions
for an INQ observable. Each reception time calculated from Eqs. (10�33) to
(10�37) should have a subscript R, indicating that the reception time is specifically
at the receiving electronics.

11.2.2 CALCULATING DELAYS AT THE BEGINNING OF SPACECRAFT

AND QUASAR LIGHT-TIME SOLUTIONS

For a spacecraft light-time solution, given the reception time t3(ST)R in
station time ST at the receiving electronics, calculated from one of Eqs. (10�33) to
(10�35), and the down-leg delay τD at the receiver, the reception time t3(ST) at
the tracking point of the receiver is given by:
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    t3 ST( ) = t3 ST( )R − τ D s (11�1)

The spacecraft light-time solution (Section 8.3.6) starts with this epoch.

For a quasar light-time solution, given the reception time t1(ST)R in station
time ST at the receiving electronics at receiver 1, calculated from Eq. (10�36) or
(10�37), and the down-leg delay   τ D1

 at receiver 1, the reception time t1(ST) at the
tracking point of receiver 1 is given by:

    t1 ST( ) = t1 ST( )R − τ D1
s (11�2)

The quasar light-time solution (Section 8.4.3) starts with this epoch.

11.2.3 CALCULATING DELAYS AT THE END OF SPACECRAFT AND

QUASAR LIGHT-TIME SOLUTIONS

For a spacecraft light-time solution, given the transmission time t1(ST) in
station time ST at the tracking point of the transmitter, calculated in
Step 32 of the spacecraft light-time solution (Section 8.3.6), and the uplink delay
τU at the transmitter, the transmission time t1(ST)T at the transmitting electronics
is given by:

    t1 ST( )T = t1 ST( ) − τ U s (11�3)

For a quasar light-time solution, given the reception time t2(ST) in station
time ST at the tracking point of receiver 2, calculated in Step 15 of the quasar
light-time solution (Section 8.4.3), and the downlink delay   τ D 2

 at receiver 2, the
reception time t2(ST)R at the receiving electronics at receiver 2 is given by:

    t2 ST( )R = t2 ST( ) + τ D 2
s (11�4)
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11.3 PRECISION ROUND-TRIP LIGHT TIME ρ

Section 11.3.1 gives the definition of the precision round-trip light time ρ
and Section 11.3.2 gives the equation for calculating ρ as a sum of terms. Most of
the terms in this equation are calculated in the spacecraft light-time solution and
in related calculations. Calculating ρ as a sum of terms instead of the difference of
two epochs reduces the roundoff errors in this calculation by approximately four
orders of magnitude.

11.3.1 DEFINITION OF ρ

The definition of the precision round-trip light time ρ is given by:

    ρ = t3 ST( )R − t1 ST( )T s (11�5)

where     t3 ST( )R is the reception time in station time ST of the spacecraft signal at
the receiving electronics at the receiver and     t1 ST( )T  is the corresponding
transmission time in station time ST at the transmitting electronics at the
transmitter. The receiver and the transmitter can each be a tracking station on
Earth or an Earth satellite. If the transmitter is the receiver, the round-trip light
time ρ is called two-way. Otherwise, it is called three-way.

Substituting Eqs. (11�1) and (11�3) into Eq. (11�5) gives:

    ρ = t3 ST( ) − t1 ST( )[ ] + τ D + τ U s (11�6)

where     t3 ST( ) is the reception time in station time ST at the tracking point of the
antenna at the receiver and     t1 ST( ) is the transmission time in station time ST at
the tracking point of the antenna at the transmitter. The various tracking points
are defined in the fifth paragraph of Section 11.2. The quantity   τ D  is the
downlink delay at the receiver and   τ U  is the uplink delay at the transmitter. The
previously given definition of ρ is Eq. (10�17), which is the first term of
Eq. (11�6). This previous definition was given prior to the introduction of delays
in Section 11.2. The first term of Eq. (11�6) is the round-trip light time in station
time ST calculated in the spacecraft light-time solution.
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11.3.2 CALCULATION OF ρ

The precision round-trip light time ρ defined by Eq. (11�5) or (11�6) is
calculated as the following sum of terms:

    

ρ =
r23

c
+ RLT23 +

r12

c
+ RLT12

− ET − TAI( )t3
+ ET − TAI( )t1

− TAI − UTC( )t3
+ TAI − UTC( )t1

− UTC − ST( )t3
+ UTC − ST( )t1

+ 1

103 c
Rc + ∆Aρ t3( ) + ∆SCρ23 + ∆Aρ t1( ) + ∆SCρ12[ ]

+ τ D + τ U

s (11�7)

where c is the speed of light in kilometers per second.

The down-leg range r23, up-leg range r12, down-leg relativistic light-time
delay RLT23, up-leg relativistic light-time delay RLT12, the three time differences
at the reception time t3, and the three time differences at the transmission time t1

are all calculated in the round-trip spacecraft light-time solution as specified in
Section 8.3.6.

In Eq. (11�7), the intermediate time UTC (Coordinated Universal Time) is
only used when the receiver or the transmitter is a DSN tracking station on
Earth. If the receiver is an Earth satellite, the intermediate time UTC is replaced
with TOPEX master time (denoted as TPX). If the transmitter is an Earth satellite,
the intermediate time UTC is replaced with GPS master time (denoted as GPS).
Note that the constant values of TAI − TPX and TAI − GPS are obtained from the
GIN file. The use of different inputs for the receiving and transmitting satellites
allows for different constant offsets from satellite TAI (see Section 2.2.2) to the
nominal values of station time ST at the two satellites.
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The parameter Rc is a solve-for round-trip range bias in meters. It is
specified by the receiving DSN tracking station number and time block for that
station.

The terms     ∆Aρ t3( ) and     ∆Aρ t1( ) are antenna corrections at receiving and
transmitting DSN tracking stations on Earth, calculated from the formulation of
Section 10.5. They are a function of the antenna type at the DSN tracking station,
the axis offset b, and the secondary angle of the antenna. The value of this angle
used to evaluate each antenna correction is one of the unrefracted auxiliary
angles calculated at t3 or t1 from the formulation of Section 9. If the receiver or
the transmitter is an Earth satellite, the analogous correction is the offset from
the center of mass of the satellite to the nominal phase center of the satellite. This
offset is calculated as described in Section 7.3.3 when interpolating the ephemeris
of the satellite.

The down-leg solar corona range correction   ∆SCρ23  and the up-leg solar
corona range correction   ∆SCρ12 are calculated in the spacecraft light-time
solution from the formulation of Section 10.4.

The down-leg delay τD at the receiver and the up-leg delay τU at the
transmitter are obtained from the record of the OD file for the data point.

Equation (11�7) does not include corrections due to the troposphere or
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�27) to (10�29) for the corrections ∆ρ, ∆ρe, and ∆ρs to ρ
given by Eq. (11�7). These corrections to ρ are handled separately as described in
Sections 10.1 and 10.2.

In order to minimize roundoff errors in the precision round-trip light time
ρ calculated from the sum of terms (11�7), add the terms     r23 c and     r12 c  to the
sum last.

11.4 PRECISION ONE-WAY LIGHT TIME   ρ1

This section gives the formulation for calculating the differenced one-way
light time   �ρ1 which is used to calculate the computed values of one-way doppler
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(F1) observables and one-way narrowband (INS) and wideband (IWS) spacecraft
interferometry observables. The high-level equations for calculating the
differenced one-way light time are given in Section 11.4.1. Calculation of the
differenced one-way light time requires the calculation of the quantity ∆, which is
the change in the time difference ET − TAI which occurs during the transmission
interval at the spacecraft. The high-level equations for calculating ∆ are given in
Section 11.4.2. The detailed algorithm for calculating the arguments of the
quantity ∆ is given in Section 11.4.3. The expression for the precision one-way
light time   ρ1, which does not include the time difference ET − TAI at the
transmission time t2 at the spacecraft, is given in Section 11.4.4.

11.4.1 HIGH-LEVEL EQUATIONS FOR CALCULATING DIFFERENCED

ONE-WAY LIGHT TIMES

It will be seen in Section 13 that the precision one-way light time   �ρ1 which
is differenced and then used to calculate the computed values of F1 and one-way
INS and IWS observables is defined to be:

    �ρ1 3 2= ( ) − ( )t tST TAIR s (11�8)

where t3(ST)R is the reception time in station time ST at the receiving electronics
at the receiver (a receiving station on Earth or an Earth satellite) and t2(TAI) is
the transmission time in International Atomic Time TAI at the spacecraft. Note
that the atomic clock that reads TAI on board the spacecraft agreed with TAI on
Earth prior to launching the spacecraft. This is discussed further in Section 11.4.2.
In order to calculate   �ρ1, an expression is required for the time difference

    
ET − TAI( )t2

 at the transmission time t2 at the spacecraft. Section 2 gives
expressions for calculating ET − TAI at a tracking station on Earth and at an Earth
satellite. However, we do not have an expression for calculating ET − TAI at a
spacecraft on an arbitrary trajectory through the Solar System. Hence, instead of
calculating the precision one-way light time   �ρ1, we will calculate the precision
one-way light time   ρ1 which is defined to be:

    ρ1 = t3 ST( )R − t2 ET( ) s (11�9)
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where t2(ET) is the transmission time in coordinate time ET at the spacecraft. The
relation between   �ρ1 and   ρ1 is:

    
�ρ ρ1 1 2

= + −( )ET TAI t s (11�10)

Section 10.2.3.1.1 describes the differenced one-way light times which are
used to calculate the computed values of F1 and one-way INS and IWS

observables. However, the light-time differences are differences of   �ρ1 defined by
Eq. (11�8) instead of   ρ1 defined by Eq. (11�9) as stated in Section 10.2.3.1.1.

From Eq. (11�10), the differenced one-way light time used to calculate the
computed value of an F1 observable and each F1 observable differenced to give
the computed value of a one-way INS observable are given by:

  
� �ρ ρ ρ ρ1 1 1 1e s e s

− = − + ∆ s (11�11)

where

    
∆ = ET − TAI( )t2e

− ET − TAI( )t2s
s (11�12)

In Eq. (11�11), the one-way light times with subscripts e and s have reception
times t3(ST)R equal to the end and start of the doppler count interval Tc at the
receiver. In Eq. (11�12), the time differences (ET − TAI) at the spacecraft are
evaluated at the end and start of the transmission interval     Tc

′ , which
corresponds to the reception interval     Tc  at the receiver.

In order to calculate the computed value of a one-way IWS observable,
Eqs. (11�11) and (11�12) can be used with subscripts e and s changed to
Receiver 2 and Receiver 1, respectively. In these modified equations, the
precision one-way light times for receivers 2 and 1 have a common reception
time t3(ST)R, which is equal to the data time tag. The transmission times at the
spacecraft for each of the two receivers will differ by less than the Earth�s radius
divided by the speed of light, or 0.02 s.
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The high-level equations for calculating ∆ defined by Eq. (11�12) are given
in the next section.

11.4.2 HIGH-LEVEL EQUATIONS FOR CALCULATING ∆

The quantity ∆, defined by Eq. (11�12), can be expressed as:

    

∆ =
( )

( )

∫ I d
t

t

ET

s

e

ET

ET

2

2

s (11�13)

where     t2e
ET( )  and     t2s

ET( ) are epochs at the end and start of the transmission
interval at the spacecraft, and:

    
I = 1 −

dTAI
dET

(11�14)

The quantity     dTAI is an interval of atomic time recorded on the TAI clock
carried by the spacecraft. The corresponding interval of coordinate time ET is

    dET. From Eq. (2�20), the quantity I is given by:

    
I = 1

c 2 U + 1
2 v2( ) − L (11�15)

where U is the gravitational potential at the spacecraft and v is the Solar-System
barycentric velocity of the spacecraft. The constant L is defined by Eq. (2�22),
evaluated at mean sea level on Earth. This initial condition is used because if the
spacecraft atomic clock were placed on the surface of the Earth at mean sea level,
it would agree with International Atomic Time TAI on Earth (see Eqs. (2�20) and
(2�22)). The constant L is obtained by evaluating Eq. (4�12); the resulting
numerical value is given by Eq. (4�13). The derivative of I with respect to
coordinate time ET is given by:

    
ú úI U v

c
= + ( )⋅





1 1
2

2
2 1/s (11�16)
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where     úU  and 
    

v2( )⋅ are time derivatives of U and v2, respectively.

In the local geocentric space-time frame of reference, the gravitational
potential U in Eq. (11�15) is due to the Earth, and v is the geocentric space-fixed
velocity of the spacecraft. The constant L in the geocentric frame of reference is
obtained by evaluating Eq. (4�14); the resulting numerical value is given by Eq.
(4�15).

If we represent I as a cubic function of coordinate time ET in Eq. (11�13), it
can be shown that the function ∆ is given by:

    ∆ = +( ) − −( )1
2

1
12

2I I T I I Te s e s
ú ú s (11�17)

where

    T = t2e
ET( ) − t2s

ET( ) s (11�18)

In Eq. (11�17), Ie and     
úIe  are I and     úI  given by Eqs. (11�15) and (11�16), evaluated

at the epoch     t2e
ET( ) . Similarly, Is and     

úIs  are evaluated at the epoch     t2s
ET( ).

The next section gives the algorithm for calculating 
    
U U v v, ú , ,   and 2 2( )⋅.

Evaluating this algorithm at     t2e
ET( )  and     t2s

ET( ) and substituting the calculated

quantities into Eqs. (11�15) and (11�16) gives the required values of

    I I I Ie s e s   and , , ú , ú , which are used to calculate ∆ from Eqs. (11�17) and (11�18).

Eqs. (11�13) to (11�18) can be used in calculating the computed values of
F1 and one-way INS observables. However, for one-way IWS observables, the
notation must be changed. The epoch     t2e

ET( )  must be changed to

    t2 ET( )Receiver 2 , the transmission time at the spacecraft for receiver 2. The epoch

    t2s
ET( ) must be changed to     t2 ET( )Receiver 1, the transmission time at the

spacecraft for receiver 1. In Eq. (11�17), the subscripts e and s refer to the epochs

    t2 ET( )Receiver 2  and     t2 ET( )Receiver 1, respectively.
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11.4.3 ALGORITHM FOR CALCULATING THE ARGUMENTS     U U,  ú ,  ,υ 2

AND 
  
υ 2( )⋅OF I AND     úI

The gravitational potential U at the spacecraft and its time derivative     úU
are calculated from:

    U = Upm + Uobl km2/s2 (11�19)

    
ú ú úU U U= +pm obl km2/s3 (11�20)

where Upm is the potential at the spacecraft due to bodies treated as point masses.
The term Uobl is the additional potential at the spacecraft due to the oblateness of
a nearby body. The algorithms for calculating Upm and Uobl and their time
derivatives are given in Subsections 11.4.3.1 and 11.4.3.2.

The equations for calculating the terms v2 and 
    

v2( )⋅ of Eqs. (11�15) and

(11�16) are given in Subsection 11.4.3.3.

All quantities calculated in Subsections 11.4.3.1 to 11.4.3.3 are evaluated at
the transmission time t2 of the one-way spacecraft light-time solution.

The algorithms for calculating 
    
U U v v, ú , ,   and 2 2( )⋅ apply in general in the

Solar-System barycentric space-time frame of reference. The simplifications that

apply when calculating these quantities in the local geocentric space-time frame

of reference are noted.

11.4.3.1 Gravitational Potential at the Spacecraft Due to Point-Mass Bodies

1. Obtain the Solar-System barycentric (C) space-fixed position and
velocity vectors of bodies k consisting of the Sun, Mercury, Venus,
the Earth, the Moon, the barycenters of the planetary systems Mars
through Pluto, and possibly one or more asteroids or comets. These
vectors are available from Steps 7 and 17 of the spacecraft light-time
solution (Section 8.3.6).
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    r rk
C

k
C , ú (11�21)

2. If the spacecraft is free and is within the sphere of influence of one of
the outer planet systems Mars through Pluto, or if the spacecraft is
landed and the lander body is the planet or one of the satellites of
one of these outer planet systems, obtain the space-fixed position
and velocity vectors of bodies k consisting of the planet and each
satellite on the satellite ephemeris relative to the barycenter P of the
planetary system:

    r rk
P

k
P , ú (11�22)

These vectors are available from Steps 8 and 17 of the spacecraft
light-time solution.

3. Add the vectors (11�21) for k = the planetary system P to the vectors
(11�22) to give the Solar-System barycentric position and velocity
vectors of the planet and each satellite on the satellite ephemeris.

4. Obtain the space-fixed Solar-System barycentric position, velocity,
and acceleration vectors of the free or landed spacecraft p:

    r rp
C

p
C

p
C  , ú , úúr (11�23)

These vectors are calculated in Steps 7 to 11, 17, and 18 of the
spacecraft light-time solution.

5. Given the Solar-System barycentric position and velocity vectors of
the Sun, the Moon, the planets, the planetary satellites, and possibly
one or more asteroids or comets calculated in Steps 1 to 3 (bodies k)
and the spacecraft (p) in Step 4, calculate the space-fixed position and
velocity vectors of the spacecraft relative to each body k:

    r p
k = r p

C − r k
C km (11�24)
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ú ú úr r rp

k
p
C

k
C= − km/s (11�25)

6. Calculate the range and the range rate from each body k to the
spacecraft p:

      
rkp = r p

k km (11�26)

      
ú úr

rkp
p
k

kp
p
k= ⋅

r
r km/s (11�27)

7. The gravitational constants   µk for the bodies k in units of km3/s2 are
obtained from the planetary, small-body, and satellite ephemerides
as described in Sections 3.1.2.2 and 3.2.2.1.

8. Calculate the point-mass gravitational potential     Upm and its time
derivative     

úUpm from:

    

Upm =
µk

rkp
k

∑ km2/s2 (11�28)

    

ú úU
r

rpm
k

kp
k

kp= −∑ µ
2 km2/s3 (11�29)

In the local geocentric space-time frame of reference, the
summations over bodies k include one body only, namely, the Earth.
The space-fixed position, velocity, and acceleration vectors of the
spacecraft relative to the Earth are obtained by interpolating the
spacecraft ephemeris in Steps 9 and 17 of the spacecraft light-time
solution. Substituting these vectors into Eqs. (11�26) and (11�27)
gives     rkp  and     

úrkp .
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11.4.3.2 Gravitational Potential at the Spacecraft Due to a Nearby Oblate

Body

The term Uobl of Eq. (11�19) is the gravitational potential at the spacecraft
due to the oblateness of a nearby planet. If the spacecraft is within the sphere of
influence of Mercury, Venus, or the Earth, Uobl is calculated for that planet. If the
spacecraft is within the sphere of influence of one of the outer planet systems
Mars through Pluto, Uobl is calculated for the planet of that system. The
oblateness potential is not calculated for the Sun, the Moon, satellites of the outer
planet systems, asteroids, or comets. Note that if the spacecraft is landed on a
planet or a planetary satellite, it will be within the sphere of influence of the
planet and hence Uobl due to the planet will be calculated.

1. Step 5 of Section 11.4.3.1 gives the space-fixed position and velocity
vectors of the spacecraft (p) relative to the nearby oblate planet (k):

    r rp
k

p
k , ú (11�30)

2. Substituting these vectors into Eqs. (11�26) and (11�27) gives the
range and range-rate from the oblate planet to the spacecraft:

    r rkp kp , ú (11�31)

3. The space-fixed unit vector P directed toward the oblate planet�s
north pole (axis of rotation) of date is calculated from:

    

P =














cos cos
cos sin

sin

δ α
δ α

δ
(11�32)

where α and δ are the right ascension and declination of the planet�s
north pole of date relative to the mean Earth equator and equinox of
J2000. For each planet except the Earth, α  and δ are calculated from
Eqs. (6�8), (6�9), and (5�65). The coefficients in these linear equations
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are obtained from Table I of Davies et al. (1996). For the planet
Neptune, α  and δ should be supplemented with the nutation terms
∆α and ∆δ, which are calculated from Eqs. (6�15), (6�17), and (5�65).
The coefficients in these equations are obtained from Table I of
Davies et al. (1996). For the Earth, α  and δ are calculated from
Eqs. (5�142), (5�143), and (5�65).

4. The gravitational potential at the spacecraft due to the oblateness of a
nearby planet is a function of the latitude φ of the spacecraft relative
to the planet�s equator. Given the quantities (11�30) to (11�32), the
sine of the latitude φ and its time derivative are calculated from:

      
sinφ = ⋅P

r p
k

kpr
(11�33)

      
sin ú

ú
φ( )⋅ = ⋅ −











P
r r

r

r

rkp
p
k kp

kp
p
k (11�34)

5. Given     r = rkp and     
ú úr r= kp from Step 2, and the gravitational constant

of the planet   µ = µk  from Step 7 of Section 11.4.3.1, the gravitational
potential at the spacecraft due to the zonal harmonic coefficients of a
nearby planet and the time derivative of the gravitational potential
are calculated from:

    

U
r

J
a
r

Pn

n

n

n

N

obl = − 





=
∑µ

2

(11�35)

    

ú ú
sinU

r
J

a
r

n
r
r

P Pn

n

n n

n

N

obl = 



 +( ) − ′( ) ( )⋅





=
∑µ φ1

2

(11�36)

where
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Jn = zonal harmonic coefficient of degree n

N = highest degree n of zonal harmonics (obtained from GIN
file) or 8, whichever is smaller

a = mean equatorial radius of planet

Pn = Legendre polynomial of degree n in sin φ

  Pn
′ = derivative of Pn with respect to sin φ

The Legendre polynomial Pn is computed recursively from Eqs. (175)
to (177) of Moyer (1971). The quantity   Pn

′  is computed recursively
from Eqs. (178) and (179) of Moyer (1971).

11.4.3.3 Square of Spacecraft Velocity

1. Step 4 of Section 11.4.3.1 gives the space-fixed velocity and
acceleration vectors of the free or landed spacecraft (p) relative to the
Solar-System barycenter (C):

    
ú , úúr rp

C
p
C (11�37)

In the local geocentric space-time frame of reference, these vectors
are referred to the Earth (superscript E instead of C). They are
obtained as described in Step 8 of Section 11.4.3.1.

2. In the Solar-System barycentric space-time frame of reference, the
square of the Solar-System barycentric velocity v of the spacecraft is
calculated from:

      v
2 = ⋅ú úr rp

C
p
C (11�38)

The time derivative of v2 is calculated from:

      
v2 2( )⋅ = ⋅ú úúr rp

C
p
C (11�39)
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In the local geocentric space-time frame of reference, the square of
the geocentric space-fixed velocity v of the spacecraft and its time
derivative are calculated from these same equations with the
superscript C changed to E.

11.4.4 CALCULATION OF PRECISION ONE-WAY LIGHT TIME   ρ1

The computed values of one-way doppler (F1) observables, one-way
narrowband spacecraft interferometry (INS) observables, and one-way
wideband spacecraft interferometry (IWS) observables are calculated from
differenced one-way range   �ρ1 calculated from Eq. (11�11). The right-hand side of
this equation contains differenced one-way range   ρ1, where each of the two one-
way ranges   ρ1 is defined by Eq. (11�9). Substituting Eq. (11�1) into Eq. (11�9)
gives:

    ρ1 = t3 ST( ) − t2 ET( ) + τ D s (11�40)

where t3(ST) is the reception time at the tracking point of the receiver (defined in
the fifth paragraph of Section 11.2) and   τ D  is the down-leg delay at the receiver.

The precision one-way light time ρ1 defined by Eq. (11�9) or (11�40) is
calculated as the following sum of terms:

    

ρ1 =
r23

c
+ RLT23

− ET − TAI( )t3

− TAI − UTC( )t3

− UTC − ST( )t3

+ 1

103 c
∆Aρ t3( ) + ∆SCρ23[ ]

+ τ D

s (11�41)
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where c is the speed of light in kilometers per second. This equation was
obtained from Eq. (11�7) for the precision round-trip light time ρ by deleting all
up-leg terms, the time differences at t1, the up-leg delay   τ U  at the transmitter,
and the round-trip range bias Rc.

The surviving terms in Eq. (11�41) are obtained from the spacecraft light-
time solution or are calculated as described in Section 11.3.2. In this case,
however, the spacecraft light-time solution is one-way, not round-trip.

Equation (11�41) does not include corrections due to the troposphere or
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�24) to (10�26) for the corrections   ∆ρ1e

,  ∆ρ1s
,  and ∆ρ1 to

ρ1 given by Eq. (11�41). These corrections to ρ1 are handled separately as
described in Sections 10.1 and 10.2.

Eq. (11�41) accounts for the location of the tracking point of the receiver
(see Section 11.3.2). However, unless the spacecraft is a GPS satellite, the phase
center of the spacecraft is currently assumed to be located at the center of mass
of the spacecraft (see the spacecraft light-time solution, Section 8.3.6, Step 9). This
affects ρ1 calculated from Eq. (11�41) and ρ calculated from Eq. (11�7).

11.5 PRECISION ONE-WAY LIGHT TIME 
  
ρ1 FOR GPS/TOPEX

OBSERVABLES

This section gives the formulation for calculating the precision one-way
light time ρ1 (in units of kilometers), which is the computed value of a
GPS/TOPEX pseudo-range or carrier-phase observable. For these observables,
the transmitter is a GPS Earth satellite, and the receiver is either a TOPEX Earth
satellite (or equivalent) or a GPS receiving station on Earth.

The definition of the precision one-way light time ρ1 (in units of
kilometers) is given in Section 11.5.1. Section 11.5.2 gives the equation for
calculating ρ1 as a sum of terms. One of the terms of the equation for ρ1 contains
the geometrical phase correction ∆Φ, which is only calculated for carrier-phase
observables. The formulation for calculating ∆Φ is given in Section 11.5.3. The
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equation for ρ1 contains terms for the variable parts of the phase center offsets at
the transmitting GPS satellite and the receiving TOPEX satellite or the GPS
receiving station on Earth. These variable phase-center offsets are calculated for
carrier-phase observables only as described in Section 11.5.4.

11.5.1 DEFINITION OF   ρ1

The definition of the precision one-way light time ρ1 (in units of
kilometers), which is the computed value of a GPS/TOPEX pseudo-range or
carrier-phase observable, is given by:

    ρ1 = c t3 ST( )R − t2 ST( )[ ] km (11�42)

where c is the speed of light in kilometers per second. Substituting Eq. (11�1) into
Eq. (11�42) gives the following alternate definition of ρ1:

    ρ1 = c t3 ST( ) − t2 ST( ) + τ D[ ] km (11�43)

In these equations, t2(ST) is the transmission time in station time ST at the
tracking point of the GPS satellite. The reception time in station time ST at the
tracking point of the receiving TOPEX satellite or the GPS receiving station on
Earth is t3(ST). Adding the down-leg delay τD to t3(ST) gives the reception time
t3(ST)R at the receiving electronics. If the receiver is the TOPEX satellite, τD is set
to zero.

Observed values of GPS/TOPEX pseudo-range and carrier-phase
observables are obtained with an L1-band transmitter frequency and also with
an L2-band transmitter frequency. The values of these two transmitter
frequencies are given in Eq. (7�1). Each observable pair is used to construct a
weighted average observable, which is free of the effects of charged particles.
The weighting equations are Eqs. (7�2) to (7�4). In principal, each computed
observable should be computed using an L1-band transmitter frequency and
also using an L2-band transmitter frequency. A weighted average computed
observable is then computed using Eqs. (7�2) to (7�4). The following section
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gives the equation for the computed value of a GPS/TOPEX pseudo-range or
carrier-phase observable. Each frequency-dependent term must be computed as
a weighted average using Eqs. (7�2) to (7�4). The remaining terms are computed
once. The frequency-dependent terms are the constant and variable phase-center
offsets at the transmitter and the receiver and the geometrical phase correction
for carrier-phase observables.

11.5.2 CALCULATION OF   ρ1

The precision one-way light time ρ1 defined by Eq. (11�42) or (11�43) is
calculated as the following sum of terms:

    

ρ

π
ρ ρ

τ

1
23

23

3 2

3 2

3 2

3 2

2

= +


− −( ) + −( )

− −( ) + −( )
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+ + +
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+
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
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t t

t t

t t
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TAI MT TAI GPS

MT ST GPS ST

A A
D

∆Φ ∆ ∆

km (11�44)

The down-leg range r23, the down-leg relativistic light-time delay RLT23,
the three time differences at the reception time t3, and the three time differences
at the transmission time t2 are all calculated in the down-leg spacecraft light-time
solution as specified in Section 8.3.6.

In Eq. (11�44), the parameter MT in the time differences at the reception
time t3 is master time at the receiver. If the receiver is a GPS receiving station on
Earth, MT is GPS master time (denoted as GPS). If the receiver is the TOPEX
satellite, MT is TOPEX master time (denoted as TPX). Note that GPS master time
is also used in the time differences at the transmission time t2 at a GPS satellite.



PRECISION  LIGHT  TIMES

11�27

The parameter Bias is a solve-for bias in seconds. One estimate of the
parameter Bias is obtained by fitting to pseudo-range observables, and a second
independent estimate of the parameter Bias is obtained by fitting to carrier-phase
observables.

The initial value of a carrier-phase observable will be determined modulo
one cycle (it will be continuous thereafter), which will differ drastically from the
computed value of the carrier-phase observable. Hence, it is necessary to include
an estimable bias in the computed value of carrier-phase observables. This bias
must be different for each receiver/transmitter pair. In practice, the bias for
carrier-phase observables and the independent bias for pseudo-range
observables are specified by receiving station (a GPS receiving station on Earth
or the TOPEX satellite) in time blocks. For each receiver, a new time block is used
for each separate pass of data and each time the transmitter changes.

The initial value of a carrier-phase observable will be adjusted in the data
editor so that it is approximately equal to the corresponding pseudo-range
observable. This will result in much smaller estimated biases for carrier-phase
observables.

The geometrical phase correction ∆Φ is the lag in the measured phase at
the receiver (in radians) due to the rotation of the receiver relative to the
transmitter. It is calculated for carrier-phase observables only from the
formulation given in Section 11.5.3.

The down-leg range r23 is the distance from the nominal phase center of
the transmitting GPS satellite at the transmission time t2 to the nominal phase
center of the receiving TOPEX satellite or a GPS receiving station on Earth at the
reception time t3. The terms     ∆Aρ t3( ) and     ∆Aρ t2( ) in cycles divided by the
down-leg carrier frequency f in cycles per second are changes in the down-leg
light time     r23 / c  due to transmission and reception at the actual phase centers
instead of the nominal phase centers. Positive and negative values of the variable
phase-center offsets     ∆Aρ t3( ) and     ∆Aρ t2( ) correspond to increases and
decreases in the down-leg range and light time. The variable phase-center offsets
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are calculated from the formulation of Section 11.5.4. They are calculated for
carrier-phase observables only.

The down-leg delay τD at the receiver is obtained from the record of the
OD file for the data point. However, if the receiver is the TOPEX satellite, it will
probably be set to zero.

Eq. (11�44) does not include corrections for the troposphere or for
charged particles. Pseudo-range and carrier-phase observables are calculated as a
weighted average, which eliminates the effects of charged particles. Troposphere
corrections are not calculated if the receiver is the TOPEX satellite. If the receiver
is a GPS receiving station on Earth, troposphere corrections are calculated in the
Regres editor and are placed in the first term of Eq. (10�26) multiplied by the
speed of light c, which gives the correction ∆  ρ1 in kilometers to   ρ1 given by Eq.
(11�44). This correction to   ρ1 is handled separately as described in Sections 10.1
and 10.2.

11.5.3 FORMULATION FOR CALCULATING THE GEOMETRICAL PHASE

CORRECTION ∆Φ

The geometrical phase correction ∆Φ (in radians) in Eq. (11�44) is only
calculated for GPS/TOPEX carrier-phase observables. It is the lag in the
measured phase of the received signal at the receiver due to the rotation of the
receiver relative to the transmitter. It will be seen in Section 13 that carrier-phase
observables are proportional to the phase of a reference signal minus the phase
of the received signal at the TOPEX satellite or at a GPS receiving station on
Earth. Since the phase of the received signal is the phase of the transmitted signal
minus the phase lag ∆Φ, the sign of the term in Eq. (11�44) which contains the
phase lag ∆Φ is positive.

The formulation for calculating the geometrical phase correction was
obtained from Wu et al. (1990). It applies for a right-circularly-polarized wave
propagated from the transmitter to the receiver. Section 11.5.3.1 gives the
algorithm for calculating the geometrical phase correction ∆Φ in radians. Section
11.5.3.2 describes the calculation of the space-fixed unit vectors along the axes of
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the transmitting GPS satellite and the receiving TOPEX satellite. Section 11.5.3.3
describes the calculation of the space-fixed unit vectors along the north, east, and
zenith vectors at a GPS receiving station on Earth. Calculation of the unit vector
k from the transmitter to the receiver is described in Section 11.5.3.4. Section
11.5.3.5 describes how the frequency-dependent geometrical phase correction

    ∆Φ 2πf  in Eq. (11�44) is calculated as a weighted average, as discussed in Section
11.5.1.

11.5.3.1 Algorithm for Computing the Geometrical Phase Correction

From Eq. (20) of Wu et al. (1990), the effective dipole D for the receiving
antenna at the TOPEX satellite or at a GPS receiving station on Earth is given by:

  D = x − k k ⋅ x( ) + k × y (11�45)

where x and y are space-fixed unit vectors along the x and y axes of the receiving
antenna (see Wu et al. (1990), Figure 1) at the reception time t3 and k is a space-
fixed unit vector directed from the transmitting GPS satellite at the transmission
time t2 to the receiver at the reception time t3. The effective dipole   ′D  for the
transmitting antenna at the GPS satellite is given by Eq. (28) of Wu et al. (1990):

  ′D = ′x − k k ⋅ ′x( ) − k × ′y (11�46)

where   ′x  and   ′y  are space-fixed unit vectors along the   ′x  and   ′y  axes of the
transmitting antenna (see Wu et al. (1990), Figure 1) at the transmission time t2.
Calculation of the unit vectors in Eqs. (11�45) and (11�46) is described in the
following three sections.

Unit vectors along the effective dipoles D and   ′D  are calculated from:

      
�D

D=
D

(11�47)

and
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� ′ = ′

′
D

D
D

(11�48)

where D is the magnitude of D and   ′D  is the magnitude of   ′D . The unit vectors

    �D  and     � ′D  are normal to k.

The phase lag ∆φ is a discontinuous function of time, which will be
converted below to the continuous function of time ∆Φ. The discontinuous phase
lag ∆φ is plus or minus the angle between     �D  and     � ′D . It is calculated from
Eqs. (30) and (31) of Wu et al. (1990):

    
∆φ ζ= ( ) ′ ⋅( )−sign cos � �1 D D rad (11�49)

where

    
ζ = ⋅ ′ ×( )k D D� � (11�50)

In Eq. (11�49), the arccosine function gives an angle in the range of 0 to π
radians. Adding the sign function to this equation gives ∆φ calculated from Eqs.
(11�49) and (11�50) which has a range of −π to π radians. As ∆φ increases slowly
through π radians, it drops by 2π. Similarly, when ∆φ decreases through −π
radians, it jumps by 2π. The discontinuous phase lag ∆φ calculated from
Eqs. (11�49) and (11�50) is converted to the continuous phase lag ∆Φ using
Eqs. (29) and (32) of Wu et al. (1990):

    ∆Φ = 2πN + ∆φ rad (11�51)

where

    
N =

−







nint

prev∆Φ ∆φ

π2
(11�52)

where nint is the nearest integer function and   ∆Φprev  is the previously computed
value of the continuous phase lag ∆Φ. The phase lag ∆Φ must be computed
separately for each pass of each transmitter/receiver pair. The value of N should
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be set to zero at the beginning of each pass. Each time ∆φ suffers a discontinuity
of   ± 2π, the integer N will change by minus or plus 1. Note that the nearest
integer function nint will only give the correct value of N if the change in the
continuous angle ∆Φ is less than 180°. It is assumed that the data spacing for
carrier-phase observables will be small enough so that this will be the case.

11.5.3.2 Unit Vectors   ′x  and   ′y  at the Transmitting GPS Satellite and Unit

Vectors x and y at the Receiving TOPEX Satellite

The space-fixed unit vectors X, Y, and Z are aligned with the x, y, and z

axes of the spacecraft-fixed coordinate system for the TOPEX satellite at the
reception time t3 and for a GPS satellite at the transmission time t2. The X, Y, and
Z vectors for the TOPEX satellite are obtained when interpolating the PV file for
the TOPEX satellite in Step 3 of the algorithm given in Section 7.3.3, which is
evaluated in Step 2 of the spacecraft light-time solution (Section 8.3.6). The X, Y,
and Z vectors for the GPS satellite are obtained when interpolating the PV file for
the GPS satellite in Step 3 of the algorithm given in Section 7.3.3, which is
evaluated in Step 9 of the spacecraft light-time solution.

The relation between the unit vectors X, Y, and Z interpolated from the
PV files for the GPS and TOPEX satellites and the unit vectors     ′x ,  ′y ,  and ′z  for
the transmitting GPS satellite and     x,  y,  and z for the receiving TOPEX satellite,
which are required to compute the effective dipoles D and   ′D  from Eqs. (11�45)
and (11�46), must be determined.

The X-Y and x-y planes at the TOPEX satellite are the same plane. It is the
antenna plane which is perpendicular to the boresight vector z. However,

  x × y = z which is nominally directed up and   X × Y = Z = − z  which is nominally
directed down. Given X, Y, and Z for the TOPEX satellite, an x-y-z system can be
constructed as follows:

    

x = Y

y = X

z = − Z (not used)

(11�53)
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The alignment of x with the Y spacecraft axis is arbitrary. The actual orientation
of x in the X-Y plane is unknown. The use of x computed from Eq. (11�53) will
produce a constant error in the phase lag computed from Eqs. (11�45) to (11�52).

The X-Y and   ′x -  ′y  planes at the transmitting GPS satellite are the same
plane. It is the antenna plane which is perpendicular to the boresight vector   ′z .
Also,   ′x × ′y = ′z  and   X × Y = Z  where   Z = ′z   is nominally directed down. Given
X, Y, and Z for the transmitting GPS satellite, an   ′x -  ′y -  ′z  system can be
constructed as follows:

    

′x = X

′y = Y

′z = Z (not used)

(11�54)

The alignment of   ′x  with the X spacecraft axis is arbitrary. The actual orientation
of   ′x  in the X-Y plane is unknown. The use of   ′x  computed from Eq. (11�54) will
produce a constant error in the phase lag computed from Eqs. (11�45) to
(11�52).

The constant error in the computed phase lag ∆Φ will be absorbed into the
estimated value of the carrier-phase bias Bias in Eq. (11�44).

11.5.3.3 Unit Vectors x and y at a GPS Receiving Station on Earth

The north N, east E, and zenith Z unit vectors at the reception time t3 at a
GPS receiving station on Earth are calculated during the calculation of the Earth-
fixed position vector of the tracking station (using the formulation of Section 5)
and during the calculation of auxiliary angles at the tracking station (using the
formulation of Section 9). These unit vectors are calculated in the Earth-fixed
coordinate system and have rectangular components referred to the true pole,
prime meridian, and equator of date. The N, E, and Z unit vectors can be
transformed from the Earth-fixed coordinate system to the space-fixed
coordinate system (rectangular components referred to the mean Earth equator
and equinox of J2000) using:
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      NSF = TE t3( ) N     N → E,Z (11�55)

where the subscript SF refers to space-fixed components of the vector. The
Earth-fixed to space-fixed transformation matrix     TE t3( ) at the reception time t3

at the GPS receiving station on Earth is calculated from the formulation of
Section 5.3. It is available from Step 2 of the spacecraft light-time solution (Section
8.3.6).

The N and E vectors are in the antenna plane (normal to the boresight
vector Z) of the GPS receiving station on Earth. Given the NSF, ESF, and ZSF unit
vectors computed from Eq. (11�55), with rectangular components referred to the
mean Earth equator and equinox of J2000, the required unit vectors x, y, and z of
the receiving antenna (which are used to calculate the effective dipole D from
Eq. (11�45)) can be constructed from:

    

x = NSF

y = − ESF

z = ZSF (not used)

(11�56)

Note that   x × y = z which is directed up. The alignment of x with N is arbitrary.
The actual orientation of x in the N-E plane is unknown. The use of x calculated
from Eq. (11�56) will produce a constant error in the computed phase lag ∆Φ,
which will be absorbed into the estimated carrier-phase bias Bias.

11.5.3.4 Unit Vector k Along Light Path From Transmitter to Receiver

Since relativistic effects are not included in the computed phase lag ∆Φ ,
the unit vector k used in Eqs. (11�45), (11�46), and (11�50) can be computed
from:

      
k =

r 23

r23
(11�57)
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where       r 23 r23  is the down-leg unit vector calculated in Step 14 of the spacecraft
light-time solution (Section 8.3.6).

11.5.3.5 Calculating the Geometrical Phase Correction     ∆Φ 2πf  as a Weighted

Average

The geometrical phase correction     ∆Φ 2πf  in Eq. (11�44) must be
computed as a weighted average of the value at the L1-band transmitter
frequency and the value at the L2-band transmitter frequency, as discussed in
Section 11.5.1. The weighting equations are Eqs. (7�2) to (7�4). Substituting

    ∆Φ 2πL1 into the first term of Eq. (7�2) and     ∆Φ 2πL2 into the second term
gives the following expression for the weighted average (WA) value of the
geometrical phase correction     ∆Φ 2πf :

    

∆Φ ∆Φ
2 2π πf L L









 =

( )WA 1+ 2
s (11�58)

where L1 and L2 are given by Eq. (7�1). This value of     ∆Φ 2πf  should be used in
Eq. (11�44).

11.5.4 CALCULATION OF VARIABLE PHASE-CENTER OFFSETS

Two tables can be used to obtain the variable phase-center offset     ∆Aρ t3( )
at the reception time t3 at the TOPEX satellite. One table gives the variable phase-
center offset     ∆Aρ t3( ) in cycles for an L1-band carrier frequency and the second
table gives     ∆Aρ t3( ) in cycles for an L2-band carrier frequency. Two similar
tables are used for reception at a GPS receiving station on Earth. Variable phase-
center offsets at the transmitting GPS satellite have not been measured, and
hence the term     ∆Aρ t2( ) f  in Eq. (11�44) is zero.

Each of the above-mentioned tables gives the variable phase-center offset
for a particular receiver and band. The arguments for these tables are the
antenna zenith angle and the antenna azimuth angle. Section 11.5.4.1 gives the
equations for converting the auxiliary azimuth and elevation angles calculated at
the reception time at the TOPEX satellite and at a GPS receiving station on Earth
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to the required antenna angles. The equations for interpolating the tables with
these angles are given in Section 11.5.4.2. Section 11.5.4.3 gives the equation for
calculating the term     ∆Aρ t3( ) f  of Eq. (11�44) as a weighted average of the
L1-band and L2�band values. This term is only calculated for GPS/TOPEX
carrier-phase observables.

11.5.4.1 Calculation of Angular Arguments

The arguments for the tables (which give the variable phase-center offset

    ∆Aρ t3( ) in cycles at the TOPEX satellite and at a GPS receiving station on Earth)
are the antenna zenith angle zA and the antenna azimuth angle σA. The antenna
zenith angle is measured from the antenna boresight direction, which is directed
up for both receivers. The antenna azimuth angle is measured counter clockwise
(when viewed from above the antenna) from the x axis of the antenna. Regres
calculates auxiliary elevation   γGPS and azimuth   σGPS angles at the reception time
t3 at a GPS receiving station on Earth (Section 9.3.3.2). It also calculates differently
defined auxiliary elevation   γTPX and azimuth   σTPX angles at the reception time
t3 at the TOPEX satellite (Section 9.5.1). The following equations transform the
auxiliary angles to the angular arguments of the variable phase-center offset
tables. For a GPS receiving station on Earth,

    

zA = π
2

− γGPS

σA = 2π − σGPS     

0 ≤ zA ≤ π
2

0 ≤ σA ≤ 2π
(11�59)

For the TOPEX satellite,

    

zA = π
2

+ γTPX

σA = 2π − σTPX     

0 ≤ zA ≤ π

0 ≤ σA ≤ 2π
(11�60)

These four angles must be converted from radians to degrees.
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11.5.4.2 Interpolation of Variable Phase-Center Offset Tables

The variable phase-center offset tables give values of the variable phase-
center offset   ∆Aρ in cycles every   5° in the antenna zenith angle zA and in the
antenna azimuth angle σA. The arguments zA and σA will be between the tabular
values z1 and z2 and σ1 and σ2, respectively. The value of   ∆Aρ at the
interpolation point     zA ,σA( ), which will be denoted as     ∆Aρ zA ,σA( ) , can be
obtained by using bilinear interpolation. This requires three linear interpolations.
First interpolate at σ1 to zA. Then interpolate at σ2 to zA. Finally, interpolate at zA

to σA. The result of these calculations is given by:

    

∆Aρ zA ,σA( ) = ∆Aρ z1 ,σ1( ) 1 − f z( ) 1 − f σ( )
+ ∆Aρ z2 ,σ1( ) f z 1 − f σ( )
+ ∆Aρ z1 ,σ2( ) 1 − f z( ) f σ

+ ∆Aρ z2 ,σ2( ) f z f σ

cycles (11�61)

where

    
f z =

zA − z1

z2 − z1
(11�62)

    
f σ =

σA − σ1

σ2 − σ1
(11�63)

11.5.4.3 Calculation of Variable Phase-Center Offset as a Weighted Average

Let the variable phase-center offset   ∆Aρ in cycles interpolated from the
L1-band variable phase-center offset table for the receiver (the TOPEX satellite or
a GPS receiving station on Earth) using Eqs. (11�61) to (11�63) be denoted by

  ∆Aρ L1. Similarly, let the L2-band variable phase-center offset interpolated from
the L2-band table be denoted by   ∆Aρ L2. Substituting the L1-band variable
phase-center offset     ∆Aρ L1 L1 in seconds and the L2-band variable phase-center
offset     ∆Aρ L2 L2 in seconds into Eqs. (7�2) to (7�4) gives the following
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expression for the weighted average (WA) value of the variable phase-center
offset     ∆Aρ t3( ) f  in Eq. (11�44):

    

∆ ∆ ∆A

WA

A L1 A L2ρ ρ ρt

f

L t L t

L L
3 3 3

2 2

1 2

1 2

( )







 =

( ) − ( )
−

s (11�64)

where L1 and L2 are given by Eq. (7�1). This value of     ∆Aρ t3( ) f  should be used
in Eq. (11�44).

11.6 PRECISION QUASAR DELAY τ

Section 11.6.1 gives the definition of the precision quasar delay τ, and
Section 11.6.2 gives the equation for calculating τ as a sum of terms. Most of the
terms in this equation are calculated in the quasar light-time solution and in
related calculations. Calculating τ as a sum of terms instead of the difference of
two epochs reduces the roundoff errors in this calculation by approximately four
orders of magnitude.

11.6.1 DEFINITION OF τ

The definition of the precision quasar delay τ is given by:

    τ = t2 ST( )R − t1 ST( )R s (11�65)

where     t2 ST( )R and     t1 ST( )R are reception times in station time ST of the quasar
wavefront at the receiving electronics of receiver 2 and receiver 1, respectively.
Each of these two receivers can be a tracking station on Earth or an Earth
satellite. Substituting Eqs. (11�2) and (11�4) into Eq. (11�65) gives:

    τ = t2 ST( ) − t1 ST( )[ ] + τ D2
− τ D1

s (11�66)

where     t2 ST( ) and     t1 ST( ) are reception times in station time ST of the quasar
wavefront at the tracking points of receivers 2 and 1, respectively. The various
tracking points are defined in the fifth paragraph of Section 11.2. The quantities
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  τ D2
 and   τ D1

 are the downlink delays for receivers 2 and 1, respectively. If either
receiver is an Earth satellite, its delay is currently set to zero.

11.6.2 CALCULATION OF τ

The precision quasar delay τ defined by Eq. (11�65) or (11�66) is calculated
as the following sum of terms:

    

τ =
r12

c
+ RLT12

− ET − TAI( )t2
+ ET − TAI( )t1

− TAI − UTC( )t2
+ TAI − UTC( )t1

− UTC − ST( )t2
+ UTC − ST( )t1

+ 1

103 c
∆Aρ t2( ) + ∆SCρ2 − ∆Aρ t1( ) − ∆SCρ1[ ]

+ τ D2
− τ D1

s (11�67)

where c is the speed of light in kilometers per second.

The distance r12 that the quasar wavefront travels from receiver 1 to
receiver 2, the relativistic light-time delay RLT12, the three time differences at the
reception time t2 at receiver 2, and the three time differences at the reception
time t1 at receiver 1 are all calculated in the quasar light-time solution as specified
in Section 8.4.3.

In Eq. (11�67), the intermediate time UTC at receiver 2 or at receiver 1 is
only used if that receiver is a DSN tracking station on Earth. If receiver 2 is an
Earth satellite, UTC is replaced with TOPEX master time (TPX) and the constant
offset (TAI − TPX) is obtained from the GIN file. Similarly, if receiver 1 is an Earth
satellite, UTC is replaced with GPS master time (GPS) and the constant offset
(TAI − GPS) is obtained from the GIN file.
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The terms     ∆Aρ t2( ) and     ∆Aρ t1( ) are antenna corrections at receivers 2
and 1, respectively, if they are DSN tracking stations on Earth. They are
calculated after the light-time solution from the formulation of Section 10.5. They
are a function of the antenna type at the DSN tracking station, the axis offset b,
and the secondary angle of the antenna. The value of this angle used to evaluate
each antenna correction is one of the unrefracted auxiliary angles calculated at t2

or t1 from the formulation of Section 9. If either receiver is an Earth satellite, the
analogous correction is the offset from the center of mass of the satellite to the
nominal phase center of the satellite. This offset can be calculated as described in
Section 7.3.3 when interpolating the ephemeris of the satellite, or it can be zero.

The down-leg solar corona range correction   ∆SCρ 2 at receiver 2 and the
down-leg solar corona range correction   ∆SCρ1 at receiver 1 are calculated in the
quasar light-time solution from the formulation of Section 10.4.

The down-leg delay   τ D2
 at receiver 2 and the down-leg delay   τ D1

 at
receiver 1 are obtained from the record of the OD file for the data point.

Equation (11�67) does not include corrections due to the troposphere and
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�30) to (10�32) for the corrections ∆τ, ∆τe, and ∆τs to τ
given by Eq. (11�67). These corrections to τ are handled separately as described
in Sections 10.1 and 10.2. If either receiver is an Earth satellite, the troposphere
and charged-particle corrections for that receiver are set to zero.
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